MTH 201: Multivariable Calculus and Differential Equations

Homework II

(Due 02/09)

1. For each of the following scalar fields, compute all first-order partial derivatives. Also, verify that $D_{1}\left(D_{2} f\right)=D_{2}\left(D_{1} f\right)$.
(a) $f(x, y)=\tan ^{-1}\left(\frac{x+y}{1-x y}\right)$.
(b) $f(x, y)=\log \left(x^{2}+y^{2}\right)$.
2. Let f be a scalar field.
(a) If $f^{\prime}(x ; y)=0$ for every x in some n-ball $B(a)$ and for every vector y, then prove that f is constant on $B(a)$. [Hint: Use the Mean-Value Theorem]
(b) If $f^{\prime}(x ; y)=0$ for fixed vector y and for every vector x in some n-ball $B(a)$, then what can we say about f ?
(c) For a fixed vector a, prove that $f^{\prime}(a ; y)>0$ cannot hold good for every nonzero vector y.
3. A set S in \mathbb{R}^{n} is called convex if for every pair of points a and b in S, the line segment from a to b is also in S; in other words, $t a+(1-t) b \in S$ for each $t \in[0,1]$.
(a) Prove that every n-ball is convex.
(b) If $f^{\prime}(x ; y)=0$ for every x in an open convex set S and for every $y \in \mathbb{R}^{n}$, prove that f is constant on S.
4. Evaluate the directional derivatives of the following scalar fields for the points and directions given:
(a) $f(x, y, z)=x^{2}+2 y^{2}+3 z^{2}$ at $(1,1,0)$ in the direction of $i-j+2 k$.
(b) $f(x, y, z)=(x / y)^{z}$ at $(1,1,1)$ in the direction of $2 i+j-k$.
(c) $f(x, y, z)=3 x-5 y+2 z$ at $(2,2,1)$ in direction of the outward normal to the sphere $x^{2}+y^{2}+z^{2}=9$.
(d) $f(x, y, z)=x^{2}-y^{2}$ at $(3,4,5)$ along the curve of intersection of $2 x^{2}+2 y^{2}-z^{2}=25$ and $x^{2}+y^{2}=z^{2}$.
5. Let f and g are scalar fields that are differentiable on an open set S. Derive the following properties of the gradient.
(a) $\nabla(f g)=f \nabla g+g \nabla f$.
(b) $\nabla\left(\frac{f}{g}\right)=\frac{g \nabla f-f \nabla g}{g^{2}}$, where $g \neq 0$.
6. Assume that f is differentiable at each point of an n-ball $B(a)$.
(a) If $\nabla f(x)=0$ for every $x \in B(a)$, prove that f is constant on $B(a)$.
(b) If $f(x) \leq f(a)$ for every $x \in B(a)$, prove that $\nabla f(a)=0$.
7. Find a equation of the tangent plane to the surface $x y z=a^{3}$ at a general point $\left(x_{0}, y_{0}, z_{0}\right)$. Show that the volume of the tetrahedron bounded by this plane and the three coordinate planes is $9 a^{3} / 2$.
8. Find a constant c such that at any point of the intersection of the two spheres

$$
(x-c)^{2}+y^{2}+z^{2}=3 \text { and } x^{2}+(y-1)^{2}+z^{2}=1,
$$

the corresponding tangent planes will be perpendicular to each other.
9. If r_{1} and r_{2} denote the distances from a point (x, y) on the ellipse to its foci, show that the equation $r_{1}+r_{2}=$ constant (satisfied by these distances) implies the relation

$$
T \cdot \nabla\left(r_{1}+r_{2}\right)=0,
$$

where T is the unit tangent to the curve.

